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Abstract 

In a recent work, a learning procedure for relaxation labeling algorithms has been introduced which involves minimizing 
a certain cost function with classical gradient methods. Although the results obtained so far are extremely promising, the 
gradient-based learning algorithm suffers from some inherent drawbacks that could prevent its application to real-world 
problems of practical interest. Essentially, these include the inability to escape from local minima and its computational 
complexity. In this paper, we propose using genetic algorithms to solve the relaxation labeling learning problem in an 
attempt to overcome the difficulties with the gradient algorithm. Experiments are presented which demonstrate the 
superiority of the proposed approach both in terms of quality of solutions and robustness. 
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1. Introduction 

Relaxation labeling processes are a broad class of 
popular techniques within the pattern recognition and 
machine vision domains (Rosenfeld et al., 1976; 
Hummel and Zucker, 1983; Davis and Rosenfeld, 
1981). They are parallel iterative procedures that 
attempt to combine local and contextual information 
in order to remove, or at least reduce, labeling 
ambiguities in classification problems where local 
measurements may be noisy or unreliable. In (con- 
tinuous) relaxation labeling models, contextual infor- 
mation is embedded in a set of real-valued compati-  

bility coefficients, which quantitatively express the 
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degree of agreement of label configurations. In the 
past, a number of authors have stressed the impor- 
tance of deriving "good"  compatibility coefficients, 
and several heuristic statistical-based interpretations 
such as correlation (Rosenfeld et al., 1976) or mutual 
information (Peleg and Rosenfeld, 1978) have been 
formulated. 

Recently, a novel approach for determining the 
compatibility model of relaxation labeling proce- 
dures has been introduced which views the problem 
as one of learning (Pelillo and Refice, 1994) - this 
has been shown to clearly outperform the standard 
statistical approach. According to this standpoint, 
compatibility coefficients are derived in such a way 
as to optimize the performance of the relaxation 
labeling algorithm over a sample of training data. 
This amounts to minimizing a certain cost function 

0167-8655/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0167-8655(95)00061-5 



1 0 7 0  M. Pelillo et al. / Pattern Recognition Letters 16 (1995) 1069-1078 

which quantifies the degree of "goodness" of a 
given set of compatibility strengths, so that the learn- 
ing task is formulated in terms of an optimization 
problem. This is essentially the approach that has 
recently become so popular within the neural net- 
work community (see (Pelillo and Refice, 1994) for 
a discussion concerning the relations between neural 
network and relaxation labeling learning algorithms). 

In (Pelillo and Refice, 1994), classical gradient 
techniques were used to solve the relaxation labeling 
training problem. However, gradient-based learning 
procedures exhibit some inherent limitations that 
could prevent them from being applied to high-di- 
mensional problems of practical interest. To begin 
with, the surface defined by the cost function can be 
a very complex one and can have many poor local 
minima, so that the gradient algorithm may be easily 
trapped into such a solution. Another problem with 
the gradient procedure concerns its computational 
complexity as it requires in each step a number of 
operations of the order of the fourth power of the 
number of labels (or classes) of the problem at hand. 
This makes the algorithm excessively expensive in 
problems where a large number of classes is in- 
volved (for example, in character or text recognition 
the number of character categories may range from a 
few tens to some thousands). As a final remark, we 
note that some relaxation schemes are even non-dif- 
ferentiable (see, e.g., Zucker et al., 1981) and this 
completely prevents the gradient algorithm from be- 
ing applied. 

In this paper, we attempt to overcome the limita- 
tions of gradient-based relaxation labeling learning 
procedures by proposing the use of genetic algo- 
rithms (GAS) (Goldberg, 1989; Holland, 1992) which 
have recently gained wide popularity as optimization 
procedures, especially for their properties of robust- 
ness and simplicity. Genetic algorithms exhibit sev- 
eral advantages over gradient-based optimization 
procedures. Firstly, they efficiently explore complex 
search spaces and are able to find globally near-opti- 
mal solutions without being trapped into local op- 
tima. Also, they involve simple arithmetic operations 
and do not require any auxiliary information about 
the objective function (like derivatives) other than 
the values of the function themselves. In addition, 
we found GAs attractive for our learning problem 
because they are computationally less expensive than 

gradient methods, requiring in each step a time 
roughly proportional to the square of the number of 
labels (although more training cycles are typically 
needed to find a solution). Finally, since GAs work 
on populations, they lend themselves well to parallel 
implementation (Goldberg, 1989). 

The paper is organized as follows. In Section 2, 
we briefly introduce relaxation labeling processes 
and formulate the learning problem as one of opti- 
mization. In Section 3, we describe GAs and the way 
in which they are applied to the present learning 
task. Section 4 presents some experimental results 
and, finally, Section 5 concludes the paper. 

2. Relaxation labeling and the learning problem 

Relaxation labeling processes involve a set of 
objects B = {bl , . . . ,  b,} and a set of labels A = 
{1,. . . ,  m}. The purpose is to label each object of B 
with one label of A. By means of some local 
measurement it is generally possible to construct, for 

- ( 0 )  ( r ~ ( 0 )  n(O)~T such each object hi, a vector Pi =,~'i l  , . . . ,  r im ,  
that ,,C0)>t0 ( i - - l , . .  ,n  and A = I ,  m) and Y i A  . . . .  , 

y-n<o)= 1 ( i =  1, ,n). Each p~O) can thus be 
A / " i A  • • • 

interpreted as the a priori  (non-contextual) probabil- 
ity distribution of labels for b v By simply concate- 
nating p~O) . . . .  , p(O) we obtain an initial weighted 
labeling assignment for the objects of B that will be 
denoted by p~0)~ Rnm. The compatibility model is 
represented by a four-dimensional matrix of real-val- 
ued nonnegative compatibility coefficients R = 
{rij(A , /z)}ij~,; the element rij(A, IX) measures the 
strength of compatibility between the hypotheses " b  i 
has label A" and "bj has label /z". High values 
correspond to compatibility and low values corre- 
spond to incompatibility. We will find it convenient 
to "linearize" the matrix R and consider it as a 
column vector r. 

The relaxation labeling algorithm accepts as input 
. . . . .  T 

the mlUal labehng assxgnment p<0)=(p~0) , . . . ,  
p~°)T) T and updates it iteratively, taking into account 
the compatibility model, in order to eventually 
achieve global consistency. At the nh iteration (t  = 
0, 1, 2 . . . .  ) the labeling is updated according to the 
following classical formula (Rosenfeld et al., 1976): 

p(t+ 1)  _ _  r~(t)~(t)/ f i  n(t)~(t) ( 1 )  

~=1 
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where the denominator is simply a normalization 
factor, and 

q~t,= ~ ~ rij(A, I~)p) 0 (2) 
j = l  ~=1 

represents a "contribution" function that measures 
the strength of support that context gives to A for 
being the correct label for b i. The process is stopped 
when some termination condition is satisfied (e.g., 
when the distance between two successive labelings 
becomes negligible or, more commonly, after a fixed 
number of iterations) and the final labeling is usually 
used to label the objects of B according to a maxima 
selection criterion (Zucker et al., 1981). The preced- 
ing formulas are those originally proposed by Rosen- 
feld et al. (1976) which, despite their completely 
heuristic derivation, have been recently shown to 
possess interesting dynamical properties (Pelillo, 
1994). Although in this work we have restricted 
ourselves primarily to this relaxation scheme, we 
would like to emphasize that the learning approach 
we are proposing here does not depend in any way 
on the particular updating rule employed, and does 
work even with non-differentiable relaxation schemes 
(Zucker et al., 1981). 

Now, let us focus on the learning problem. Let a 
set of learning samples 

t = { t l  . . . .  , tN)  

be given, where each sample L-r (y  = 1 . . . . .  N)  is a 
set of labeled objects of the form 

For each y = 1 . . . . .  N, let p(t~) ~ R,~m denote the 
unambiguous labeling assignment for the objects of 
L.r, i.e., 

p!t~,) = [ O, if a =# A~', 

"~ [1 ,  if a=A~'  " 

Also, suppose that we have some mechanism for 
constructing an initial labeling p(/,) on the basis of 
the objects in L-r, and let p(F,) denote the labeling 
produced by the relaxation algorithm, according to 
any stopping criterion, when p(/,) is given as input. 
In general, a relaxation labeling process is a function 
that, given as input a vector of compatibilities r and 
an initial labeling p(1), produces iteratively the final 
labeling p(F). Here, we will consider the relaxation 

operator as a function of the compatibility coeffi- 
cients only, the initial labeling being regarded as a 
constant. 

Broadly speaking, the learning problem for a re- 
laxation labeling process is to determine a vector of 
compatibilities r so that the final labeling p(F,) be 
as close as possible to the desired labeling p(t~), for 
each y = 1 . . . . .  N. To do this, we can define a cost 
function measuring the loss incurred when p(e,) is 
obtained instead of p(t~), and attempt to minimize it 
with respect to r. As both p (Fz') and p(t~) are 
composed of n-r probability vectors (the p!F~)'S and 
the p~t,)'s, respectively), it seems natural to make 
use of some divergence measure between probability 
distributions. The best known of such measures is 
certainly Kullback's (1959) directed divergence 
which was in fact used in the previous work with the 
gradient algorithm (Pelillo and Refice, 1994), and 
yielded better generalization results than the more 
traditional quadratic error function. However, Kull- 
back's divergence measure requires that the two 
probability distributions be absolutely continuous. In 
our case, this means that p~tr).p}L~)4= 0 for all 
i = 1 . . . . .  n-r, which, in words, amounts to requiring 
that the relaxation algorithm does assign nonzero 
probability to the correct labels. Therefore, the use of 
Kullback's measure could cause a run-time error 
when, for some i, this condition is not met, and we 
mention that this actually occurred in our prelimi- 
nary experiments with the GA. Fortunately, Lin 
(1991) has recently proposed a more robust informa- 
tion-theoretic divergence measure which does not 
require the absolute continuity property and is closely 
related to Kullback's measure. According to Lin's 
measure, the cost (or error) for sample 3' turns out to 
be: 

ny 

E-r=ny - ~ log2(1 +p~F~)'p~ LO) (3) 
i=1 

where " - "  denotes the inner product operator. Note 
that E-r = 0 if and only if p(Z~) = p(e~)  and it attains 
its maximum value when relaxation assigns null 
probabilities to all the correct labels. The error 
achieved over the entire learning set can thus be 
defined as 

N 
e = ]~ E-r. (4) 

y=l  
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In conclusion, the learning problem for relaxation 
labeling can be stated as the problem of minimizing 
the function E with respect to r. In (Pelillo and 
Refice, 1994), this problem is solved by means of a 
gradient method which begins with an initial point 
r 0 and iteratively produces a sequence {r k} as fol- 
lows: 

rk+ 1 "~ rk --  OlkUk, (5) 

where u k is a direction vector determined from the 
gradient of E, and a~ is a suitable step size. It is 
readily seen that the number of derivatives that are to 
be computed is of order of m 3 (m being the number 
of label values), and for each of them about m 
calculations are needed (Pelillo and Refice, 1994). 
Therefore, the overall computational complexity of 
the algorithm turns out to be O(m4), and this makes 
it unfeasible for problems where the number of 
labels is large. 

3. Learning compatibility coefficients with genetic 
algorithms 

Genetic algorithms are parallel search procedures 
largely inspired from the mechanisms of evolution in 
natural systems (Goldberg, 1989; Holland, 1992). In 
contrast to more traditional optimization techniques, 
GAs work with a constant-size population of points 
which, in GA terminology, are called chromosomes 
or individuals. Every chromosome is associated with 
a "fi tness" value that determines its probability of 
surviving in the next generation; the higher the fit- 
ness, the higher the probability of survival. Clearly, 
in an optimization problem a chromosome's fitness 
must be somehow related to the corresponding value 
of the objective function. In the present application, 
each chromosome represents a vector of compatibil- 
ity coefficients r; each coefficient r i j ( A  , ~ )  is 
mapped onto a fixed-length string of bits, and the 
whole chromosome is then obtained by concatenat- 
ing these strings. 

The GA starts out with an initial population of S 
members generally chosen at random and, in its 
simplest version, makes use of three basic operators: 
reproduction, crossover, and mutation. The most 
popular way of implementing reproduction, com- 
monly referred to as roulette-wheel selection (Gold- 

berg, 1989), consists of choosing the chromosomes 
to be copied in the next generation according to a 
probability proportional to their fitness. Specifically, 
the probability that chromosome i will be repro- 
duced is given by 

Pi = Fil ~ Irk (6) 
k=l 

where F k represents the ftness value of the kth 
chromosome of the current population. One problem 
with this mechanism is that the best individuals do 
not necessarily survive in future generations and this 
can slow down the convergence of the algorithm. 
Indeed, a recent theoretical study (Rudolph, 1994) 
has revealed that roulette-wheel selection does not 
guarantee convergence to the global optimum, even 
in infinite time. To overcome this drawback, we 
made use of an elitist reproduction mechanism 
(Grefenstette, 1986; Davis, 1991), which consists of 
copying deterministically the best individual of each 
generation into the succeeding one, the other mem- 
bers being copied according to the usual roulette- 
wheel strategy. This straightforward modification has 
been proven to guarantee asymptotic convergence to 
the global optimum (Rudolph, 1994; Eiben et al., 
1991). After reproduction, the crossover operator is 
applied between pairs of selected individuals in order 
to produce new offspring individuals. The operator 
proceeds in two steps. First, two members are chosen 
at random; next, a cut point is determined (again) 
randomly and the corresponding right-hand segments 
are swapped. The frequency with which crossover is 
applied is controlled by a parameter Pc. Recall that 
in our application each chromosome represents a 
vector of compatibility coefficients; hence, the 
crossover point is allowed to fall only at the bound- 
ary between two successive coefficients. Doing so, 
crossover does not create new compatibility coeffi- 
cients but simply exchanges coefficients between 
vectors. The task of producing new compatibility 
coefficients is therefore assigned to the mutation 
operator which consists of randomly reversing the 
value of every bit within a chromosome with fixed 
probability Pro" 

Basically, GAs are maximization procedures as 
they tend to favor high-fitness individuals but we are 
dealing with a minimization problem. Therefore, a 
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mapping is required between the objective function 
E defined in the previous section and the fitness 
function F. To do this, we used the following for- 
mula proposed by Caudell and Dolan (1989) in their 
experiments of neural network learning: 

F = tan{1 ~r(1 - E//Emax)} (7) 

where Ema x is the maximum value of E (i.e., E~nr). 
Notice that minimizing E is equivalent to maximiz- 
ing F, because F is a decreasing function of E. This 
formula has the advantage of strongly favoring good 
individuals in the reproduction phase; in fact, F 
tends to infinity as E goes to zero and near-optimal 
individuals are therefore allocated a very high proba- 
bility of being reproduced into the successive genera- 
tion, according to (6). 

One problem that may arise when using GAs is 
premature convergence toward mediocre individuals. 
This is generally caused by early domination of a 
few extraordinary members in a mediocre popula- 
tion. In addition, frequently during the course of the 
optimization process, the population's average fit- 
ness is close to the population's best fitness; this is 
an undesirable behavior for the GA because average 
and best individuals will have nearly the same num- 
ber of copies in next generations. In order to avoid 
such situations, Goldberg (1989) suggests scaling the 
fitness function as F ' =  aF  + b where a and b are 
appropriate parameters determined so that (1) the 
average scaled fitness F'vg equals the raw average 
fitness Favg and, (2) F'ax = kFavg , where F'ax is the 
scaled maximum fitness value, and k is the desired 
expected number of copies for the best population 
member. Following Goldberg's suggestion, in our 
experiments a value k = 2 was chosen. 

In contrast with the gradient algorithm, the GA- 
based learning procedure is computationally much 
less demanding as it requires, for each generation, a 
number of operations roughly proportional to Sm 2 

(this should be compared with the O(m 4) operations 
required by the gradient procedure). This is in fact 
the number of calculations needed to compute the 
fitness function, as seen in formulas (1)-(4), and to 
perform both the mutation and the crossover opera- 
tions. However, due to the stochastic nature of the 
algorithm and the diversity of the operations per- 
formed during a genetic search (i.e., bit reversing, 
substring swapping, etc.), a precise estimation of the 

computational complexity of the GA-based learning 
algorithm is not as simple as for the gradient proce- 
dure. Moreover, GAs typically need many genera- 
tions to find an optimal solution and this suggests 
that, as far as learning time is concerned, the GA 
learning procedure cannot be regarded as a serious 
competitor of the gradient method when S = m 2. 

4. Results 

In order to assess the effectiveness of the pro- 
posed evolutionary learning algorithm, some experi- 
ments on both a toy and a practical application were 
carried out. The first task involved labeling the sides 
of a triangle, whereas the second one consisted of 
tagging words with their parts-of-speech. In both 
applications we made a comparison between the 
genetic and the gradient learning algorithm. Specifi- 
cally, the GA was run using the following parame- 
ters, which appeared to be nearly optimal: S = 50, 
Pc = 0.5, Pm= 0.01 for the triangle example and 
Pm = 0.001 in the part-of-speech task; furthermore, 
in both applications each compatibility coefficient 
was encoded into a 10-bit string. As to the gradient 
algorithm, the step size a k in formula (5) was kept 
fixed at 0.1. Moreover, in the triangle example the 
direction vector u k was normalized to avoid unac- 
ceptable oscillations of the algorithm, a behavior that 
was not observed in the part-of-speech task. 

4.1. Label ing a triangle 

This is the standard toy application for the relax- 
ation labeling process, originally introduced by 
Rosenfeld et al. (1976) to practically study the dy- 
namical behavior of the algorithm. The problem 
consists of labeling the sides of a triangle on a 
background, according to a 3-D interpretation. Each 
side can be interpreted either as a convex ( + )  or 
concave ( - )  dihedral angle with both faces visible, 
or as a dihedral angle with only one face visible, i.e., 
an occluding edge (<  or >). We note that in the 
latter case there are two different labels because the 
visible face can be on either side of the edge: the 
direction of the arrow determines which side of the 
edge corresponds to the visible face. Overall, there 
are 43 --- 64 possible labeling configurations but only 
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a 

a b c 

i. > > > 

2. < < < 

3. > > 

4. > > 

5. - > > 
6. < + < 

7. < < + 

8. + < < 

Fig. 1. A triangle and its meaningful interpretations. 

eight of them correspond to meaningful interpreta- 
tions, as shown in Fig. 1. 

In the experiments presented here we idealized a 
very unfavorable as well as unlikely scenario for the 
learning algorithm in that the initial labeling assign- 
ments were strongly biased toward incorrect yet 
meaningful interpretations. Fig. 2 shows the learning 
set used in the study; the goal was to train the 
relaxation process to produce the desired labelings, 
given the input labelings, after a predetermined num- 
ber of iterations. In particular, to study how the 
number of iterations performed by the relaxation 
labeling process affects the learning abilities of the 
competing algorithms, three series of simulations 
were carded out by fixing them at 1, 5, and 10. It is 
readily seen that standard statistical compatibilities 
(like correlation or mutual information) perform 
poorly on such a task for they tend to strongly favor 
the meaningful (yet incorrec0 interpretations. This 
can be easily explained by observing that statistical 
compatibilities do not incorporate any information 
regarding the desired labeling assignments, being 
derived solely on the basis of an available set of 
consistent labeling configurations. Owing to such 
objective difficulties wc found this problem to be an 
attractive benchmark for evaluating the performance 
of relaxation labeling learning procedures. 

For each predetermined number of relaxation la- 
beling iterations (i.e., 1, 5, and 10), ten independent 
runs of both the gradient and the genetic algorithm 
were performed, each started from randomly chosen 
initial compatibility vectors. The performance of the 
algorithms is shown in Fig. 3, where the mean 
learning curves along with their standard deviations 
(based on the ten trials) are plotted. More precisely, 
in the case of the GA the graphs represent the 

average behavior of the best population members in 
each generation. As can be clearly seen, in all the 
three series of experiments the GA performed signif- 
icantly better than the gradient algorithm, and exhib- 
ited also a much more robust behavior. It is interest- 
ing to notice that this superiority becomes more and 
more marked as the number of relaxation labeling 
iterations increases. This behavior has an intuitive 
explanation. Observe, in fact, that allowing the relax- 
ation labeling process to perform more cycles 
amounts to increasing the degree of nonlinearity in 
the error function E; consequently, the surface de- 
fined by E becomes much more complex and this 
enhances the tendency of the gradient algorithm to 
get stuck in local minima (cf. Fig. 3(c)). 

Additionally, the computational cost of the two 
learning procedures was compared. Each gradient 
iteration was found to be from 1.5 to 2.6 times faster 
than the corresponding GA-generation. This is not 
surprising since, as seen in the previous section, the 
GA is expected to be slower than the gradient algo- 
rithm when the number of labels is small (here we 

Case I n i t i a l  label ing Desired label ing  

> < - + > < - + 

.30 .70 .00 .00 1 0 0 0 
1) .30 .70 .00 .00 1 0 0 0 

.30 .70 .00 .00 1 0 0 0 

.70 .30 .00 .00 0 1 0 0 
2) .70 .30 .00 .00 0 1 0 0 

.70 .30 .00 .00 0 1 0 0 

.30 .70 .00 .00 1 0 0 0 
3) .00 .00 .30 .70 0 0 1 0 

.30 .70 .00 .00 1 0 0 0 

.30 .70 .00 .00 1 O 0 0 
4) .30 .70 .00 .00 1 0 0 0 

.00 .00 .30 .70 0 0 1 0 

.00 .00 .30 .70 0 0 1 0 
5) .30 .70 .00 .00 1 0 0 0 

.30 .70 .00 .00 1 0 0 0 

.70 .30 .00 .00 0 1 0 0 
6) .00 .00 .70 .30 0 0 0 1 

.70 .30 .00 .00 0 1 0 0 

.70 .30 .00 .00 0 1 0 0 
7) .70 .30 .00 .00 0 1 0 0 

.00 .00 .70 .30 0 0 0 1 

.00 .00 .70 .30 0 0 0 1 
8) .70 .30 .00 .00 0 1 0 0 

.70 .30 .00 .00 0 1 0 0 

Fig. 2. Training set used inthetoy-triangle example. 
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Fig. 3. Behavior of the mean error function E ( +  standard deviation) during training for the triangle example. Left: gradient algorithm; 
Right: GA. The graphs from (a) to (c) correspond to 1, 5, and 10 relaxation labeling iterations, respectively. 

have m = 4). It is a remarkable fact, however, that 
the GA was always capable of finding nearly optimal 
solutions within few generations. 

4.2. Part-of-speech disambiguation 

Labeling words according to their parts-of-speech 
is a fundamental problem that is encountered in 
many different contexts such as, for example, speech 
recognition, speech synthesis, and character/text 
recognition (Derouault and M&ialdo, 1984; Church, 
1989; Plamondon et al., 1994). The problem is typi- 
cally approached by two consecutive steps. In the 
first, each word within a sentence is associated with 

a list of potential labels; this can be accomplished by 
means of word-ending rules and/or  a dictionary 
look-up. Due to the presence of homographs (i.e., 
words belonging to more than one syntactic class) a 
second step is needed wherein a disambiguation is 
carried out on the basis of context; this can be 
accomplished by a relaxation labeling process (Pelillo 
and Refice, 1991, 1994). Here, the objects to be 
labeled are words, the labels are the parts-of-speech, 
and the compatibility model expresses the degree of 
agreement between nearby syntactic classes. 

In the experiments reported below, the label set 
contained the following main parts-of-speech: verb, 
noun, adjective, adverb, determiner, conjunction, 
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preposition, pronoun, and a special miscellaneous 
label. Also, the context window employed for disam- 
biguating a given word consisted of the position just 
after that word. Two separate 1,000-word sample 
texts were derived, one for training (26 sentences) 
and the other for testing (37 sentences). Both were 
extracted from a larger labeled corpus containing 
sentences taken from some issues of the EEC Italian 
Official Journal (Boves and Refice, 1987). The ini- 
tial labeling assignments were obtained using a dic- 
tionary look-up which provided, for each word, the 
list of its possible labels. The dictionary, being con- 
structed from the large corpus which included both 
the training and the testing set, had a 100% cover- 
age. This is however a quite unrealistic simplication 
for in all non-trivial applications it is unlikely that 
any computerized dictionary, whatever its size, will 
contain all the words found in unrestricted texts. This 
is especially true for Italian which, unlike English, is 
a strongly inflected language. This observation moti- 
vated us to remove from our original complete dic- 
tionary a small percentage of the less frequent words, 
so that the resulting coverage of both training and 
testing words became approximately 96% (this was 

experimentally found to be the expected asymptotic 
coverage of Italian dictionaries (D'orta et al., 1988)). 
Accordingly, to derive the initial labeling assign- 
ments the following rule was adopted. Each word 
within a sentence was first searched for into the 
dictionary; if the search succeeded, then all its poten- 
tial labels were given uniform probability. Other- 
wise, the probability mass was uniformly distributed 
among the following "o p en "  syntactic classes: verb, 
noun, adverb, and adjective (in that case, in fact, the 
word could not be in any of the remaining "closed" 
classes, whose representatives were all contained 
into the dictionary). Doing so, the training and the 
testing texts were found to have 170 and 158 am- 
biguous words (i.e., having more than one candidate 
label), respectively. 

Two series of experiments were carded out. In 
one, the relaxation labeling process was stopped after 
the first iteration, whereas in the other was allowed 
to perform exactly five iterations. In both, ten GA as 
well as gradient-based learning sessions were per- 
formed, each started with random initial configura- 
tions. The average behavior of the error function E 
and the corresponding disambiguation accuracy (i.e., 
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Fig. 4. Behavior of the mean error function E and disambiguation accuracy ( + standard deviations) during training for the part-of-speech 
example. Left: gradient algorithm; Right: GA. (a) 1 relaxation labeling iteration; (b) 5 relaxation labeling iterations. 
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Table 1 
Mean disambiguation accuracy ( +  standard deviation) over the 
test set for the part-of-speech example, using the best compatibili- 
ties found by the gradient and the genetic procedures 

Number of relaxation Gradient GA 
labeling iterations 

1 80.19% ( + 1.37) 84.49% ( +__ 1.50) 
5 79.49% ( + 2.96) 85.38% ( + 1.94) 

the percentage of correctly disambiguated ambiguous 
words), along with their standard deviations is shown 
in Fig. 4. As for the triangle example, the GA did a 
better job than the gradient procedure of finding 
good compatibility coefficients, and exhibited also a 
more stable behavior. In this case, too, the difference 
in performance becomes more evident when the 
relaxation labeling algorithm is allowed to perform 
more iterations. 

Next, to evaluate the generalization performance, 
the "bes t"  compatibilities found by both algorithms 
in each of the training session were employed to run 
the relaxation labeling process over the 1,000-word 
test set. Table 1 summarizes the results obtained. 

As can be seen, the GA obtained better results 
than its competitor in both series of experiments. 
Interestingly, among the best compatibility vectors 
found in the GA training trials, the highest general- 
ization rate was obtained by the one having the 
poorest training-set performance; this seems to indi- 
cate that "overfitting" may have taken place, a 
phenomenon that is widely documented in the neural 
network literature (Chauvin, 1990; Weigend et al., 
1990). As for neural networks, the use of "cross- 
validation" (Weigend et al., 1990) can thus help 
prevent relaxation labeling processes from being 
overtrained, thereby resulting in better generaliza- 
tion. 

Finally, with regard to computational time, each 
GA-generation was found to be about four time 
faster than the corresponding gradient iteration. This 
demonstrates how the GA becomes a more practical 
approach than the gradient method when the number 
of labels increases. Like in the previous toy example, 
it is also to be noticed that the GA was able to 
achieve near-optimal results just after a few hundred 
generations. 

5. Conclusions 

We have proposed the use of genetic algorithms 
to learn the compatibility coefficients of relaxation 
labeling processes. Genetic algorithms exhibit sev- 
eral advantages over traditional gradient methods 
which make them particularly attractive for our 
learning problem; specifically, they are able to avoid 
local optima, do not require derivative information, 
and involve simple arithmetic operations. The exper- 
imental results have demonstrated that a simple GA 
performs substantially better than gradient-based 
learning procedures and turns out to be much more 
robust. It can be concluded therefore that GAs repre- 
sent a reliable and effective technique for training 
relaxation labeling processes and, owing to their 
intrinsic simplicity, are particularly suited for real- 
world high-dimensional applications, where the gra- 
dient method would become impracticable. 
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